Friday, December 7, 2012

Persamaan Linier

Persamaan linear adalah sebuah persamaan aljabar, yang tiap sukunya mengandung konstanta, atau perkalian konstanta dengan variabel tunggal. Persamaan ini dikatakan linear sebab hubungan matematis ini dapat digambarkan sebagai garis lurus dalam Sistem koordinat Kartesius.

Contoh grafik dari suatu persamaan linear dengan nilai m=0,5 dan b=2 (garis merah)
Bentuk umum untuk persamaan linear adalah
y = mx + b.\,
Dalam hal ini, konstanta m akan menggambarkan gradien garis, dan konstanta b merupakan titik potong garis dengan sumbu-y. Persamaan lain, seperti x3, y1/2, dan xy bukanlah persamaan linear.

Contoh

Contoh sistem persamaan linear dua variabel:
x + 2y = 10,\,,
3b + 5c = 4d+ 20,\,,
5x - 3y +6 = -9x + 8y+ 4,\,

Bentuk Umum

Ax + By + C = 0,\,
dimana konstanta A dan B bila dijumlahkan, hasilnya bukan angka nol. Konstanta dituliskan sebagai A ≥ 0, seperti yang telah disepakati ahli matematika bahwa konstanta tidak boleh sama dengan nol. Grafik persamaan ini bila digambarkan, akan menghasilkan sebuah garis lurus dan setiap garis dituliskan dalam sebuah persamaan seperti yang tertera diatas. Bila A ≥ 0, dan x sebagai titik potong, maka titik koordinat-xadalah ketika garis bersilangan dengan sumbu-x (y = 0) yang digambarkan dengan rumus -c/a. Bila B≥ 0, dan y sebagai titik potong, maka titik koordinat- y adalah ketika garis bersilangan dengan sumbu-y (x = 0), yang digambarkan dengan rumus -c/b.

Bentuk standar

Ax + By = C,\,
dimana, A dan B jika dijumlahkan, tidak menghasilkan angka nol dan A bukanlah angka negatif. Bentuk standar ini dapat dirubah ke bentuk umum, tapi tidak bisa diubah ke semua bentuk, apabila A dan B adalah nol.

Bentuk titik potong gradien

Sumbu-y

y = mx + b,\,
dimana m merupaka gradien dari garis persamaan, dan titik koordinat y adalah persilangan dari sumbu-y. Ini dapat digambarkan dengan x = 0, yang memberikan nilai y = b. Persamaan ini digunakan untuk mencari sumbu-y, dimana telah diketahui nilai dari x. Y dalam rumus tersebut merupakan koordinat y yang anda taruh di grafik. Sedangkan X merupakan koordinat x yang anda taruh di grafik.

Sumbu-x

x = \frac{y}{m} + c,\,
dimana m merupakan gradien dari garis persamaan, dan c adalah titik potong-x, dan titik koordinat x adalah persilangan dari sumbu-x. Ini dapat digambarkan dengan y = 0, yang memberikan nilai x = c. Bentuk y/m dalam persamaan sendiri berarti bahwa membalikkan gradien dan mengalikannya dengan y. Persamaan ini tidak mencari titik koordinat x, dimana nilai y sudah diberikan.

Sistem persamaan linear lebih dari dua variabel

Sebuah persamaan linear bisa lebih dari dua variabel, seperti berikut ini:
a_1 x_1 + a_2 x_2 + \cdots + a_n x_n = b.
dimana dalam bentuk ini, digambarkan bahwa a1 adalah koefisien, x dan n merupakan variabel dan b adalah konstanta.
SISTEM PERSAMAAN LINEAR DUA VARIABEL
A. Pengertian persamaan linear dua variabel (PLDV)
Persamaan linear dua variabel ialah persamaan yang mengandung dua variabel dimana pangkat/derajat tiap-tiap variabelnya sama dengan satu.
Bentuk Umum PLDV :       ax + by = c       x dan y disebut variabel
B. Sistem persamaan linear dua variable (SPLDV)
Sistem persamaan linear dua variable adalah dua persamaan linear dua variable yang      mempunyai hubungan diantara keduanya dan mempunyai satu penyelesaian.
Bentuk umum SPLDV :
ax + by = c      px + qy = r     dengan  x , y disebut variabel                a, b, p, q disebut keifisien                c , r disebut konstanta   C.
Penyelesaian sistem persamaan linear dua variable (SPLDV)
Cara penyelesaian SPLDV dapat dilakukan dengan dua cara yaitu :
1. Metode Substitusi
Menggantikan satu variable dengan variable dari persamaan yang lain
contoh :  Carilah penyelesaian sistem persamaan  x + 2y = 8 dan  2x – y = 6
jawab :  Kita ambil persamaan pertama yang akan disubstitusikan yaitu   x + 2y = 8
Kemudian persamaan tersebut kita ubah menjadi  x = 8 – 2y,
Kemudian persamaan yang diubah  tersebut disubstitusikan ke persamaan
2x – y = 6  menjadi :             2 (8 – 2y) – y = 6  ; (x persamaan kedua menjadi  x = 8 – 2y)
16 – 4y – y = 6
16 – 5y = 6
-5y = 6 – 16
-5y = -10
5y = 10
y =  2
masukkan nilai y=2 ke dalam salah satu persamaan :
x + 2y = 8
x + 2. 2. = 8
x + 4  = 8
x = 8 – 4
x = 4
Jadi  penyelesaian sistem persamaan tersebut adalah x = 4 dan  y = 2.
Himpunan penyelesaiannya : HP = {4, 2}
2. Metode Eliminasi
Dengan cara menghilangkan salaj satu variable x atau y.
contoh :
Selesaikan soal di atas dengan cara eliminasi:
Jawab  ;
x + 2y = 8
2x – y = 6
(i) mengeliminasi variable x
x + 2y = 8  | x 2 | –> 2x + 4y = 16
2x – y = 6   | x 1 | –> 2x -    y = 6              -   ………*
5y  = 10
y = 2
masukkan nilai y = 2  ke dalam suatu persamaan
x  + 2 y = 8
x  + 2. 2 = 8
x + 4 = 8
x = 8 – 4
x = 4
HP = {4, 2}
(ii) mengeliminasi variable y
x + 2y = 8  | x 1 | –> x + 2y =   8
2x – y = 6   | x 2 | –> 4x – 2y = 12              +     ……*
5x  = 20
x  = 4
masukkan nilai x = 4  ke dalam suatu persamaan
x  + 2 y = 8
4  + 2y = 8
2y = 8 – 4
2y = 4
y = 2
4  = 2
HP =  {4, 2}
* catatan    nilai + atau – digunakan untuk menghilangkan/eliminasi  salah satu variable agar menjadi 0
Contoh (i) yang dieliminasi adalah x :
x dalam persamaan satu + dan persamaan dua + digunakan tanda -
(ii) yang dieliminasi adalah y :
y dalam persamaan satu +, persamaan dua -  atau sebaliknya digunakan tanda +


C. Penggunaan sistem persamaan linear dua variable
Contoh:       Harga 2 buah mangga dan 3 buah jeruk adalah Rp. 6000, kemudian apabila membeli 5 buah mangga dan  4 buah jeruk adalah Rp11.500,-
Berapa jumlah uang yang harus dibayar apabila kita akan membeli  4 buah mangga dan 5 . buah jeruk ?
Jawab :
Dalam menyelesaikan persoalan cerita seperti di atas diperlukan penggunaan model       matematika.
Misal:  harga 1 buah mangga adalah x dan harga 1 buah jeruk adalah y
Maka model matematika soal tersebut di atas adalah :
2x + 3 y = 6000
5x + 4 y = 11500
Ditanya  4 x + 5 y =  ?
Kita eliminasi variable x :
2x + 3 y = 6000     | x 5 |  = 10x + 15 y = 30.000
5x + 4 y = 11500   | x 2 |  = 10x +   8 y = 23.000    -    ( karena x persamaan 1 dan 2 +)
7y  = 7000
y  = 1000
masukkan ke dalam suatu persamaan :
2x + 3 y = 6000
2x + 3 . 1000 = 6000
2x + 3000 = 6000
2x   = 6000 – 3000
2x = 3000
x = 1500
didapatkan x = 1500 (harga sebuah mangga) dan y = 1000 (harga sebuah jeruk)
sehingga uang yang harus dibayar untuk membeli 4 buah mangga dan 5 buah jeruk
adalah  4 x + 5 y = 4. 1500 + 5. 1000
= 6000 + 5000 = Rp. 11.000,-

D. Penyelesaian sistem persamaan linear dua variable dengan menggunakan grafik garis  lurus.

Penyelesaiannya didapatkan dengan menggunakan titik potong antara dua garis lurus tersebut pada grafik garis lurus.
Contoh : kita ambil contoh soal di atas
Tentukan penyelesaian dari x + 2y = 8 dan  2x – y = 6
Langkah-langkah penyelesaiannya :
1. Menentukan titik-titik potong pada sumbu x dan sumbu y dari  kedua persamaan
Persamaan (1)
x + 2y = 8
titik potong dengan sumbu x  apabila y = 0
x + 2y = 8
x + 2.0 = 8
x = 8
titik potong dengan sumbu y  apabila x = 0
x + 2y = 8
0 + 2.y = 8
2y = 8
y   = 4
Persamaan (2)
2x  – y = 6
titik potong dengan sumbu x  apabila y = 0
2x -  y = 6
2x – .0 = 6
2x = 6
x =  3
titik potong dengan sumbu y  apabila x = 0
2x -  y = 6
0  -  .y = 6
-y  = 6
y =  -6
Unknown
Saturday, December 1, 2012

Rumus Lengkap Untuk SMP kelas VII,VII dan IX

Unknown

Materi Intergral [mudah]


Mengajarkan integral kepada siswa memang agak sedikit sulit, apalagi kalau dasar - dasar dari turunannya tidak kuat. Yup, turunan menjadi sangat penting untuk memahami materi integral karena sebenarnya integral adalah kebalikan dari proses turunan. Ketika materi baru sampai pada dasar - dasar integral mungkin siswa tidak terlalu kesulitan, tetapi ketika materi sudah mulai merambah ke integral trigonometri apalagi ditambah dengan materi teknik pengintegralan maka banyak siswa yang mulai merasa kelulitan berhadapan dengan materi ini.

Kalau kita mencoba menyusuri jagat maya untuk mencari literatur tentang hal ini memang masih sedikit blog berbahasa indonesia yang mencoba berkutak diseputar materi, dari materi yang saya upload Memang jawaban yang disajikan sudah dalam bentuk yang disederhanakan, jadi misalnya anda mengerjakan beberapa soal yang bisa dikerjakan dengan menggunakan teknik pengintegralan parsial akan terlihat perbedaan jawaban sebab mungkin jawaban anda belum di rubah dalam bentuk sederhananya. Tetapi situs ini bisa untuk membantu kita dalam berlatih dalam mengerjakan soal sebab setiap kali kita mengerjakan soal kita bisa langsung tahu jawabannya benar atau salah dengan mengeceknya lewat situs ini.
Untuk  kalian semua yang masih kesulitan juga dengan materi integral ini sekalipun sudah ada bantuan dari situs di atas mungkin penjelasan materi dalam file berikut bisa membantu anda ( file dalam Bahasa Indonesia disertai dengan beberapa contoh soal ).

Unknown
Unknown

Rumus Bilangan Bulat



RUMUS-RUMUS BILANGAN BULAT

1. Bilangan bulat terdiri dari bilangan bulat negatif, nol, dan bilangan bulat positif.
2. Sifat-sifat penjumlahan pada bilangan bulat:
a. Sifat tertutup
Untuk setiap bilangan bulat a dan b, berlaku a + b = c dengan c juga bilangan bulat.
b. Sifat komutatif
            Untuk setiap bilangan bulat a dan b, selalu berlaku a + b = b + a.
c. Sifat asosiatif
            Untuk setiap bilangan bulat a, b, dan c selalu berlaku (a + b) + c = a + (b + c).
d. Mempunyai unsur identitas
Untuk sebarang bilangan bulat a, selalu berlaku a + 0 = 0 + a. Bilangan nol (0) merupakan unsur identitas pada penjumlahan.
e. Mempunyai invers
Untuk setiap bilangan bulat a, selalu berlaku a + (–a) = (–a) + a = 0. Invers dari a adalah –a, sedangkan invers dari –a adalah a.
3. Jika a dan b bilangan bulat maka berlaku a b = a + (–b).
4. Operasi pengurangan pada bilangan bulat berlaku sifat tertutup.
5. Jika p dan q bilangan bulat maka
a. p x q = pq;
b. (–p) x q = –(p x q) = –pq;
c. p x (–q) = –(p x  q) = –pq;
d. (–p) x (–q) = p x  q = pq.
6. Untuk setiap p, q, dan r bilangan bulat berlaku sifat
a. tertutup terhadap operasi perkalian;
b. komutatif: p x q = q x p;
c. asosiatif: (p x q) x r = p x (q x  r);
d. distributif perkalian terhadap penjumlahan: p x (q + r) = (p x q) + (p x  r);
e. distributif perkalian terhadap pengurangan: p x (q r) = (p x q) – (p x  r).
7. Unsur identitas pada perkalian adalah 1, sehingga untuk setiap bilangan bulat p berlaku p x 1 = 1 x p = p.
8. Pembagian merupakan operasi kebalikan dari perkalian.
9. Pada operasi pembagian bilangan bulat tidak bersifat tertutup.
10. Apabila dalam suatu operasi hitung campuran bilangan bulat tidak terdapat tanda kurung, pengerjaannya berdasarkan sifat-sifat operasi hitung berikut.
a. Operasi penjumlahan (+) dan pengurangan (–) sama kuat, artinya operasi yang terletak di sebelah kiri dikerjakan terlebih dahulu.
b. Operasi perkalian ( 􀁵 ) dan pembagian (:) sama kuat, artinya operasi yang terletak di sebelah kiri dikerjakan terlebih dahulu.
c. Operasi perkalian ( 􀁵 ) dan pembagian (:) lebih kuat daripada operasi penjumlahan (+) dan pengurangan (–), artinya operasi perkalian (􀁵 ) dan pembagian (:) dikerjakan terlebih dahulu daripada operasi penjumlahan (+) dan pengurangan (–).


Unknown

Video dan gambar Hot anak SMA remaja

Foto Cewek Cantik Gadis SMA Terbaru (vide0)- kumpulan Foto Cewek Cantik SMA , pasti bagian yang cantik-cantik pada mau liat nih, Cantik adalah impian semua cewek di indonesia apalagi bagi anak-anak ABG atau Remaja seperti seumuran anak SMA. Cantik dan manis serta memiliki tubuh seksi adalah prioritas utama mereka. Bagi kita kaum adam maupun yang suka melihat yang cantik serta muda-muda.

Unknown Hot, Rusak

Rumus Matematika UN yang biasa keluar untuk SD


Rumus-rumus matematika SD berikut ini dibuat dalam format power point. Bagi seorang guru matematika SD, ini dapat digunakan dalam mereview rumus-rumus matematika SD yang sering keluar dalam soal Ujian Nasional. Guru dapat menganjurkan siswa-siswinya untuk menghafalkan rumus-rumus matematika ini. Dengan mengetahui rumus saja mungkin belum cukup bagi siswa untuk dapat menyelesaikan soal, namun setidaknya dengan menghafal rumus-rumus matematika dapat membantu siswa SD dalam menjawab soal-soal matematika dalam Ujian Nasional nanti.

Silahkan download rumus-rumus matematika SD berikut melalui link download yang tersedia pada bagian akhir artikel ini. Setelah siswa hafal dengan rumus matematika ini, jangan lupa untuk memberikan soal-soal latihan agar mereka terbiasa menggunakan rumus-rumus matematika SD ini dalam mengerjakan soal.

Unknown